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boundary conditions. We will focus on robust results that 
can be generally applied to other climate models.
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1  Introduction

Paleoclimate simulations of the geological past are par-
ticularly challenging since initial conditions are not well 
constrained by sedimentary data, flawed by uncertainties 
in dating and spatial scarcity, while boundary conditions 
are often affected by large uncertainty in paleogeographic 
reconstructions (National Research Council 2011, p. 86). 
As a consequence, deep-time simulations are not only lim-
ited by the usual biases of climate models, but also by addi-
tional biases which come from the construction of imperfect 
initial and boundary conditions. Moreover, the technique 
of restoring surface temperature and salinity to observed 
initial conditions, which is used to improve the stability of 
coupled simulations in preliminary integrations (Sanchez-
Gomez et al. 2016), is not possible when accurate initial 
conditions are not available. In such a situation the tuning 
procedure assumes a crucial role (Mauritsen et al. 2012; 
Golaz et al. 2013; Hourdin et al. 2017). In present-day sim-
ulations, the tuning procedure guarantees the construction 
of control runs, which are runs where the climate forcing 
(e.g., from solar brightness, atmospheric concentration of 
greenhouse gases, ...) is held constant, with minimal spuri-
ous drift (Covey et al. 2006; Sen Gupta et al. 2012, 2013). 
In paleoclimate simulations, the tuning procedure becomes 
even more important because it helps in constraining the 
possible values of parameters, thus reducing the number of 
climatic attractors that can be explored within a given cli-
mate model (Freire et al. 2008).

Abstract  Climate models are often affected by long-term 
drift that is revealed by the evolution of global variables 
such as the ocean temperature or the surface air temperature. 
This spurious trend reduces the fidelity to initial conditions 
and has a great influence on the equilibrium climate after 
long simulation times. Useful insight on the nature of the 
climate drift can be obtained using two global metrics, i.e. 
the energy imbalance at the top of the atmosphere and at the 
ocean surface. The former is an indicator of the limitations 
within a given climate model, at the level of both numerical 
implementation and physical parameterisations, while the 
latter is an indicator of the goodness of the tuning procedure. 
Using the MIT general circulation model, we construct dif-
ferent configurations with various degree of complexity (i.e. 
different parameterisations for the bulk cloud albedo, inclu-
sion or not of friction heating, different bathymetry con-
figurations) to which we apply the same tuning procedure in 
order to obtain control runs for fixed external forcing where 
the climate drift is minimised. We find that the interplay 
between tuning procedure and different configurations of 
the same climate model provides crucial information on the 
stability of the control runs and on the goodness of a given 
parameterisation. This approach is particularly relevant for 
constructing good-quality control runs of the geological 
past where huge uncertainties are found in both initial and 

 *	 Maura Brunetti 
	 maura.brunetti@unige.ch

1	 GAP‑Climate, Institute for Environmental Sciences, 
University of Geneva, 66 Bd Carl‑Vogt, 1205 Geneva, 
Switzerland

2	 Climatic Change and Climate Impacts Group, Institute 
for Environmental Sciences, University of Geneva, 66 Bd 
Carl‑Vogt, 1205 Geneva, Switzerland

http://orcid.org/0000-0001-8199-223X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-017-3883-7&domain=pdf


www.manaraa.com

4426	 M. Brunetti, C. Vérard 

1 3

In general, tuning is not well-documented in climate 
simulations but the scientific community is now more and 
more aware that tuning should be made a more explicit 
process and should be taken into account for evaluat-
ing and interpreting model results (Hourdin et al. 2017). 
Tuning is used to improve the performance of a model in 
reproducing a given climate. However, if tuning is dis-
connected from the development of improved physical 
parameterisations at the process level, the risk is to have 
heavily tuned models that mask the presence of systematic 
errors (Jakob 2014). We will present here a tuning proce-
dure that highlights the goodness of a given parameteri-
sation. The idea is to apply the same tuning procedure to 
a hierarchy of configurations of a climate model, charac-
terised by a given complexity in the representation of its 
physical processes. We will take advantage of the modu-
lar design of the MIT general circulation model (MIT-
gcm) (Marshall et al. 1997a, b; Adcroft et al. 2004), where, 
as in many other climate models, physical processes and 
parameterisations in each component of the climate system 
are designed as a module that can be activated at runt-
ime, allowing one to change the complexity of the climate 
simulations by including/excluding different parts of the 
code. The result is that the link between tuning and process 
description narrows the size of the parameter space, with 
clear advantages in particular in the case of paleoclimate 
simulations.

The tuning procedure can change from one climate code 
to the other (Gregoire et al. 2011; Irvine et al. 2013; Hour-
din et al. 2017). The optimal solution found by tuning only 
one parameter at a time can differ from the one found by 
perturbing multiple parameters systematically, using objec-
tive methods such as, for example, cost function optimisa-
tion (see Hourdin et al. (2017) and references therein). Such 
objective methods are still not commonly implemented in 
climate groups nowadays, while in general tuning procedure 
is performed in two stages. In a first stage, the model com-
ponents (atmosphere, ocean, land, sea ice) are finalised inde-
pendently in forced mode. In a second stage, the components 
are coupled together and only few parameters are allowed to 
change (in order to avoid compensating errors). For example, 
in CESM (Community Earth System Model) these tuning 
parameters are the sea ice albedo, and the humidity thresh-
old that controls the formation of low clouds (Gent et al. 
2011; Tang et al. 2016). We apply here the same tuning 
procedure to the case of MITgcm in coupled atmosphere-
ocean-sea ice configurations. We consistently use the same 
procedure at each level of complexity of the model to obtain 
quasi-equilibrium simulations over long time-scales. We 
start from considering present-day simulations with differ-
ent physical parameterisations. This will allow us to better 
understand the limitations of the code and to set the robust-
ness of the results. Then we move to deep-time paleoclimate 

simulations in order to set the right procedure for obtaining 
well-balanced control runs.

In both present-day and deep-time simulations, the tuning 
parameters are optimised by checking the energy imbalance 
of the system under consideration at the top of the atmos-
phere (hereafter named TOA imbalance) and at the ocean 
surface, since the ocean becomes the dominant energy store 
in the Earth system on a timescale of about 1 year (Palmer 
and McNeall 2014). We show that useful information on the 
limitations of the activated modules and on the quality of 
the control runs can be obtained from these energy budgets.

The paper is organised as follows: in Sect. 2 we describe 
the coupled simulations and the suite of modelling set-ups. 
In Sect. 3 we analyse the control runs for each configuration 
and we describe the method that links tuning and param-
eterisation. In Sect. 4 we discuss the relevance of the method 
for deep-time simulations and we draw conclusions.

2 � Model description and experiments

The coupled model that we use for the present study is the 
MIT general circulation model (Marshall et al. 1997a, b; 
Adcroft et al. 2004). We have chosen this code since it is 
modular programmed, open-access and it can use cubed-
sphere grids that turn out to be particularly useful when 
polar regions are covered by oceans, as was repeatedly the 
case in the geological past. In this code, the same dynamical 
kernel is employed for representing atmosphere and ocean 
dynamics (Marshall et al. 2004) on the same cubed-sphere 
grid. The Gent and McWilliams scheme (Gent and McWil-
liams 1990) is used to parameterise mesoscale eddies, while 
the KPP scheme (Large et al. 1994) accounts for vertical 
mixing processes in the ocean surface boundary layer and 
the interior. The five-level SPEEDY physics package for the 
atmosphere, that is described in Molteni (2003), comprises 
a four-band radiation scheme, boundary layer and moist 
convection schemes, resolved baroclinic eddies and diag-
nostic clouds. Orbital forcing is prescribed at present-day 
values and the atmospheric CO2 content is fixed to a constant 
value of 326 parts per million. The Winton thermodynamic 
model (Winton 2000) is used for the sea ice component. A 
two-layer land model is also included (Hansen et al. 1983).

The first step in using a climate model is to construct the 
so-called control run, it i.e. the quasi-equilibrium configu-
ration obtained by setting the climate forcing to a constant 
level. The quasi-equilibrium configuration corresponds to a 
state where global metrics, such as the surface air tempera-
ture (SAT) or the global ocean temperature, reach stationary 
values so that the climate model does not experience drifts 
that prevent to study the system over long simulation-time. 
This quasi-equilibrium configuration is obtained after a 
spin-up phase. It has been shown that long spin-up has the 
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advantage of reducing the rate of climate drift (Sen Gupta 
et al. 2012), but on the other hand, even in the presence of 
a small drift, a long integration means that the climate state 
is more likely to diverge from the initial conditions (Sen 
Gupta et al. 2013). From here the importance of constructing 
control runs with minimal drift from the beginning to obtain 
at the same time great fidelity to initial conditions and the 
possibility of performing long-term runs.

Here we consider a low resolution cubed-sphere grid, 
where each face of the cube has 32 × 32 cells, giving a hori-
zontal resolution of ca. 2.8◦. The ocean has 15 vertical levels 
with different thickness, from 50 m near the surface to 690 
m in the abyss. In this way, we can perform simulations 
over 1000 years, which is the dynamical time-scale of the 
overturning in the entire ocean, in a reasonable amount of 
CPU time, allowing us to test for different parameters and 
configurations. One of the advantages of the MITgcm code 
is that the modules for a given parameterisation can be acti-
vated at runtime so that one can easily construct a hierarchy 
of models with different degrees of complexity by including 
or not a given physical process. The simulations considered 
in the present study according to our suite of modelling set-
ups are listed in Table 1.

Run1 is the reference run where, beside all the above 
listed parameterisations, we also included a modification of 
the bulk cloud albedo that has been implemented in eight-
level SPEEDY (Kucharski et al. 2013, 2006) in order to 
correct a too strong high-latitude solar radiation flux. This 
reference run has been chosen among a series of numerical 
experiments where we changed the values of vertical dif-
fusivity within the ocean and of snow/ice albedo (as listed 
in Table 2) so that the temperature drift in the global ocean 
temperature was minimal, following the tuning procedure 
used in other modelling groups (Gent et al. 2011; Tang et al. 
2016). These albedo values are within the observed range 
reported, for example, in Nguyen et al. (2011). Afterwards, 
only the relative humidity threshold RH for low clouds (a 
parameter referred as RHCL2 in MITgcm atmospheric mod-
ule) has been changed for tuning the suite of modelling set-
ups and obtaining the corresponding control run.

In Run2  we consider a slight change in the input 
parameter RH with respect to the value found for Run1 to 
show its impact on the energy budget. In Run3 we use a 
different parameterisation for the bulk cloud albedo [the 
one typically used in five-level SPEEDY (Molteni 2003)] 
in order to discuss the impact of a different parameteri-
sation on energy budget and tuning procedure, and how 
to decide which parameterisation is better. In Run4 the 
kinetic energy dissipated within the ocean and the atmos-
phere is re-inserted into the system as thermodynamic 
energy allowing for an improved TOA budget. In Run5 
we apply the same procedure used in present-day runs to 
a different deep-time configuration, namely the Callovian 
(165 Ma) bathymetry [see Brunetti et al. (2015) for an 
example of Callovian configuration].

Our analysis is based on the calculation of annual 
means of globally integrated energy budget variables, as 
suggested in Hobbs et al. (2016) for a useful first-order 
diagnostic of the model behaviour. The TOA energy 
imbalance is calculated by summing the net shortwave 
radiation flux and the outgoing longwave radiation flux 
at each grid point, [TSR − OLR in MITgcm atmospheric 
module, in units of (Wm−2)] and then performing area-
weighted averages. Positive values correspond to a net 
radiative warming of the planet. The budget at the ocean 
surface [in units of (Wm−2)] is estimated in two ways: (1) 
from the net heat flux into the ocean (TFLUX in MITgcm 
ocean component, positive if heat enters into the ocean 
surface and the ocean warms) and (2) from taking the 
time derivative of the ocean heat content H per unit area, 
defined as:

where � = 1023 kg m−3 is seawater density, cp = 4000  J 
(K kg)−1 is the specific heat capacity [same values used 
in Hobbs et al. (2016)], T is seawater potential temperature 
and A is the ocean surface.

The model is spun up from rest, without snow and ice 
covered oceans. Initial three-dimensional distributions of 

(1)H(t) =
�ocp

A ∫ T(x, y, z, t) dx dy dz,
Table 1   List of simulations

Name Bathymetry Description Cloud albedo 
as in n-level 
SPEEDY

RH

Run1 Present-day Reference run n = 8 0.8440
Run2 ” Sensitivity to RH n = 8 0.8500
Run3 ” Cloud albedo n = 5 0.7677
Run4 ” Friction heating n = 8 0.7900
Run5 Callovian ” n = 8 0.9035

Table 2   Model parameters used to tune the reference run (Run1) 
and applied to all the other simulations

Ocean albedo 0.07
Max sea ice albedo 0.64
Min sea ice albedo 0.20
Cold snow albedo 0.85
Warm snow albedo 0.70
Old snow albedo 0.53
Vertical diffusivity 3 × 10−5 m2∕s
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potential temperature and salinity are derived from the 
ocean climatological database (annual means) (Levitus 
et al. 1994; Levitus and Boyer 1994). Land mask, vegeta-
tion cover, soil albedo and runoff are given to initialise 
the coupled atmosphere-ocean model. Simulations are run 
until deep-ocean equilibrium and the last 100 years are 
used for diagnostics.

3 � Results

We describe here the results obtained from the analysis of 
the suite of modelling set-ups listed in Table 1.

3.1 � Reference run: Run1

The reference run, Run1, is the result of the tuning pro-
cedure described in the previous section where the final 
tuning parameter is the relative humidity threshold RH for 
low clouds. Thus, given the approximations of the set-up 
described in Sect. 2, this control run can be considered as a 
good description of the pre-industrial climate.

The SAT reaches an average value of 13.4  ◦C dur-
ing the last 500 years of simulation, as can be seen in 
Fig. 1. The global ocean temperature in Run1 shows a 
very small drift, with an ocean temperature increase of 
(Tfin − Tinit)∕Tinit [

◦C] = 2% over 1000 years including the 
spin-up phase, as shown in Fig. 2. The vertical section of the 
ocean temperature evolution in Fig. 3a shows that although 
during the spin-up phase warming occurs near the surface 
and cooling at depth, implying vertical redistribution of heat 
from the deep ocean to the surface, afterwards the ocean has 
constant conditions in all the vertical section, including the 
deep ocean in the last 300 years. The overturning circulation 

is well established in the Atlantic ocean with a maximum 
intensity of 17.9 Sv at latitude 47◦N, that are typical values 
in low-resolution runs (see Fig. 4a).

The Arctic sea ice extent is comparable to annual mean 
values obtained by other climate models in pre-industrial 
simulations [ranging from 12.27 × 106 to 19.85 × 106 km2 in 
Howell et al. (2016)], as can be seen from Fig. 5. However, 
the Antarctic sea ice cover is too extensive as compared to 
12 × 106 km2 in the observations and to the annual average of 
20.3 × 106 km2 obtained in pre-industrial control simulations 
by CCSM4 (Landrum et al. 2012), probably because the sea 
ice module in our code does not include dynamical but only 
thermodynamical effects. However, the reached values are 
rather constant during the last 500 years showing that the 
simulation is stable during this period of time.

3.2 � Run2

Run2 is analysed here to illustrate the impact of tuning on 
the simulation results. The same input parameters used in 
Run1 are employed for this simulation except for the value 
of RH which is set to RH = 0.85, a value only 0.7% larger 
than the one used in Run1 (see Table 1). The effect of this 
small increase is that the energy budget at the ocean surface 
is unbalanced, 0.25 Wm−2, giving rise to SAT that reaches 
15.2 ◦C at the end of the simulation, as shown in Fig. 1, 
and to a huge drift in the global ocean temperature, with 
an increase of (Tfin − Tinit)∕Tinit[

◦C] = 23% over 1000 years 
(see Fig. 2). In the vertical section (Fig. 3b) the ocean tem-
perature increases at all depths (and especially within the 
first 1000 m depth), while both the intensity of the Atlantic 
meridional overturning circulation (AMOC) and the sea ice 
extent decrease with respect to the reference run, as shown 
in Figs. 4b and 5, respectively. We remark that the Antarctic 
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sea ice, continuously decreasing throughout the simulation, 
is more sensitive to drift than the Arctic sea ice, which sta-
bilises to an equilibrium value of 15 × 106 km2.

It turns out that there is a strong dependence on the RH 
parameter that we have summarised in Fig. 6 by plotting 
the temperature drift in the ocean as a function of the rela-
tive error in this parameter, (RH − RHc)∕RHc, where RHc 
corresponds to the no-drift case. Dots in this plot refer to 
runs with the cloud-albedo parameterisation as in eight-level 
SPEEDY. We can see that there is a value of RH where the 
drift is practically equal to zero (this value, RH = 0.844, 
corresponds to the reference run, Run1). Small variations 
around this value gives rise to unbalanced runs, like Run2.

Note that drift in the global ocean temperature occurs 
in many of the state-of-the-art climate model simulations 
conducted under CMIP5 (Hobbs et al. 2016) where dT/dt 
is typically higher than the value reached in Run1. Given 
that models drift away from the observed state chosen at 
initialisation if tuning is not sufficiently accurate, short 
spin-up results in greater fidelity to initial conditions with 

respect to long spin-up. On the other hand, long spin-up is 
an important factor in drift reduction (Sen Gupta et al. 2012, 
2013). Our analysis shows that choosing a value of RH that 
minimises the drift, such in Run1, increases model fidelity 
to initial conditions and at the same time guarantees stability 
over simulation times of the order of 1000 years.

3.3 � Run3

We have tested in Run3 a different way of representing the 
bulk cloud albedo, to be compared to the one used in Run1. 
As in the atmospheric module five-level SPEEDY (Molteni 
2003), the bulk cloud albedo is held constant in Run3. Since 
this parameterisation gives rise to a solar radiation that is 
too strong at high latitudes in coupled models, develop-
ers of the SPEEDY code remarked that using a bulk cloud 
albedo that increases with latitude improved the simula-
tion results (Kucharski et al. 2016). We thus expect that the 
parameterisation used in Run3 is less accurate than the one 
used in the reference run (Run1).
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Fig. 3   Deviation of the annual-averaged global ocean temperature from the first year as a function of depth
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We have checked that the parameterisation used in Run1 
produces less net solar radiation at high latitudes (see Fig. 7) 
with respect to Run3, as expected from the different descrip-
tion of bulk cloud albedo employed in eight- and five-level 
SPEEDY. We find that while SAT is rather constant during 
the first 800 years in Run3, it tends to increase in the last 
century (see Fig. 1). The annual-averaged global ocean tem-
perature has a positive trend all along the simulation (see 
Fig. 2). This increase in temperature can also be observed in 
Fig. 3c where the ocean temperature is seen to raise, espe-
cially in the upper 500 m. This change in the ocean and 
surface air temperature can be related to a decrease of sea 
ice extent in both north and south polar regions with respect 
to the reference run, as can be seen in Fig. 5. The AMOC 
is only slightly affected, as can be seen in Fig. 4c, while the 
total heat transport is smaller than in the case of Run1, as 
can be seen in Fig. 8a.
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Fig. 4   Atlantic meridional overturning circulation (AMOC) in Sv = 106  m3/s as a function of depth and latitude, averaged over the last 
100 years of simulation time. a Run1. AMOC anomalies with respect to Run1 for the simulations, b Run2, c Run3 and d Run4 
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The monotonic increase in global ocean temperature 
demonstrates that Run3 is not well stabilised. It is impor-
tant to note that if the tuning parameter is slightly reduced, 
the result is a monotonic decrease in the global ocean tem-
perature, showing that it is very difficult to obtain a stable 
control run for this series of simulations. In order to better 
understand this point, we have investigated the behaviour 
of the temperature drift as a function of the relative error in 
RH parameter (Fig. 6, squares) and interestingly we found 
that the dependence on this relative error is different from 
the case of Run1–Run2 series (Fig. 6, dots). In the present 

case, the temperature drift dT/dt is strongly sensitive to the 
RH parameter: a huge change in dT/dt (of the same order 
as that occurring between Run1 and Run2) is obtained for 
very small variations of RH (of the order of 0.01%, to be 
compared with 0.7% in the case of Run1 and Run2). This 
means that the parameterisation considered in Run3 and all 
the runs in the same series represented by squares in Fig. 6 
is much more sensitive to the tuning parameter RH than the 
parameterisation used in Run1 series (dots in Fig. 6). This 
sensitivity can be used as a criterium to establish for the 
goodness of a given parameterisation since the more the 
sensitivity to the tuning parameter, the smaller the range 
where the tuning parameter can vary to obtain minimal drift 
and well-stabilised control runs. This criterium, applied to 
different tuning parameters and/or parameterisations, can be 
generalised to other coupled climate models.

3.4 � Run4

The origin of the imbalance at TOA has received a great deal 
of attention from the scientific community (Pascale et al. 
2011; Lucarini and Ragone 2011; Hobbs et al. 2016). The 
imbalance is ascribed to physical processes that have been 
neglected or approximated in climate models. In our set-
up, the main source/sink of heat are (1) the neglect of the 
heating due to kinetic energy dissipation by internal stress 
and viscous processes (Lucarini and Pascale 2014) ; (2) the 
approximation of considering fixed soil moisture; (3) the 
neglect of the sea ice dynamics; (4) the approximation used 
in the thermodynamical module to limit the ice thickness to 
a maximal value of 10 m. Other sources of imbalance have 
numerical origin and can be related to the time-stepping 
method, to the advection schemes or to hyperdiffusion oper-
ators introduced in the dynamical core in order to smooth 
and avoid divergences (Lucarini and Pascale 2014).

The heating due to kinetic energy dissipation is in general 
dominant with respect to the other effects and can reach 
values of the order of 3 Wm−2 in other coupled atmosphere-
ocean general circulation models, such as HadCM3 and its 
coarse-resolution version FAMOUS (Pascale et al. 2011). 
Moreover, biases ranging from −0.3 to 4.8 Wm−2 are found in 
the net global balance of pre-industrial simulations included 
in the IPCC4AR (Lucarini and Ragone 2011). In order to 
better understand this point, we have performed simulations 
where the friction heating is returned back to the atmos-
pheric component by activating the corresponding switch 
in MITgcm. We obtain a simulation, Run4, where the TOA 
imbalance is much reduced with respect to the reference run, 
as can be seen in Table 3. The tuning procedure gives rise to 
a very well equilibrated simulation, as can be inferred from 
the time evolution of SAT, that reaches a rather constant 
value of 12.8 ◦C (Fig. 1), and from the global ocean tem-
perature, that decreases of only (Tfin − Tinit)∕Tinit[

◦C] = −2
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% in 1100 years (Fig. 2). From the vertical section of the 
ocean temperature shown in Fig. 3d, we observe that there is 
less warming of the upper ocean than in Run1, the AMOC 
increases almost everywhere by 4 Sv (Fig.  4d) while the sea 
ice extent becomes very well stabilised in the last 500 years 
of the simulation (Fig. 5).

The range where the tuning parameter gives reason-
able well equilibrated runs is comparable to Run1 series 
(compare the slope of the curves with dots and diamonds in 
Fig. 6), thus we can conclude that including friction heating 
back into the atmospheric column has a global positive effect 
on the quality of the simulations, since the TOA imbalance 
is reduced with respect to Run1, and this is a result that can 
be generalised to other coupled climate models. The positive 
effect of accounting for the friction heating clearly appears 
in the total heat transport, that is much closer to observed 
values of the order of 6 PW at 30◦N (Fasullo and Trenberth 
2008) in Run4 than in all the other considered simulations, 
as shown in Fig. 8. The improvement is particularly effec-
tive in the atmospheric contribution to the total heat trans-
port especially within the northern hemisphere, while it is 

negligible in the oceanic contribution (compare Run1 and 
Run4 in Fig. 8a, b).

3.5 � Run5

We now apply the previous method to the case of a dif-
ferent paleogeographic configuration. Since we have seen 
that including friction heating back into the atmospheric 
component had positive effects on the simulation results, 
we employ the same procedure here. We also use the cloud 
albedo parameterisation of Run1 that gives improvements 
with respect to the one used in Run3. The paleogeographic 
configuration that we consider here corresponds to the 
Callovian-Oxfordian transition (165 Ma) (see Fig. 9a or, for 
more details, Fig. 1 in Brunetti et al. (2015)), where Pangea 
breakup gave rise to the formation of the Central Atlantic 
and the Proto-Caribbean basin, and provided a connection 
between the Neo-Tethys and Panthalassa. We have already 
used this configuration in ocean-only simulations presented 
in Brunetti et al. (2015). Apart from the interest of studying 
this period using a coupled climate model and comparisons 
with geological data, that we will pursue in forthcoming 
publications, the technical challenge is now to obtain a 
stable simulation by tuning the RH parameter so that the 
TOA energy imbalance is minimal and the surface energy 
imbalance is nearly zero. For the present test we do not put 
much effort in optimising the initial conditions, for which we 
took the zonal average of the potential temperature over the 
present-day Pacific ocean, a constant salinity distribution at 
39 psu, a vegetation cover that is homogeneous in latitude 
from Sellwood and Valdes (2008), and a runoff map based 
on the topography used in Brunetti et al. (2015). The initial 
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Table 3   Energy imbalances and drift in the global ocean temperature

Simulation TOA imbal-
ance (Wm−2)

Surface imbal-
ance (Wm−2)

dT/dt (K/century)

Run1 2.65 0.00 0.001
Run2 2.81 0.25 0.052
Run3 2.74 0.23 0.047
Run4 −0.55 0.04 0.009
Run5 −0.36 0.09 0.016
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conditions are anyway affected by many uncertainties, the 
range of published estimates of Jurassic atmospheric CO2 
content varying between present-day values to 15 times such 
values (Sellwood and Valdes 2008).

The simulation results are shown in Fig. 9. Both SAT and 
global ocean temperature increase during the spin-up phase 
and reach a stable value around 18 and 3.8 ◦C, respectively 
(Fig. 9b). The vertical section of the ocean temperature 
shows that it is well stabilised at all depths (Fig. 9c). The 
upper ocean is much warmer than at the beginning, show-
ing that the initial conditions should indeed be optimised in 
order to reduce the gap with respect to the final equilibrium. 
The sea ice extent reaches a constant value of 12 × 106 km2 
in the north polar region, while it shows larger variability 
in the south polar region near a mean value of 9 × 106 km2 
(Fig. 9d).

The sensitivity to the tuning parameter, quantified by the 
slope in the plot in Fig. 6 showing temperature drift against 
the relative error in RH, is of the same order as the sen-
sitivity in the Run4 series (compare stars and diamonds 
in Fig. 6). We have thus proved that the above method is 
general and can be applied successfully to other bathymetric 
configurations.

4 � Discussion and conclusions

High-accuracy measurements from satellite programs 
as CERES [Clouds and the Earth’s Radiant Energy Sys-
tem  (Wielicki et  al. 1996) and SORCE (Solar Radia-
tion and Climate Experiment  (Anderson and Cahalan 
2005)] have constrained the radiation fluxes at TOA 
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with uncertainty range of less than 1 Wm−2. The result-
ing imbalance at TOA is in agreement with that deter-
mined from changes in ocean heat content that amounts 
to 0.8 ± 0.2 Wm−2 (Hansen et al. 2011; Wild et al. 2013). 
Thus, in the present-day climate, observations point to 
equal values of TOA and ocean surface budget of the order 
of 1 Wm−2.

Ideally the same imbalance should be obtained in cli-
mate models. However, while ensemble averages are in 
general in agreement with these values (Wild et al. 2013; 
Trenberth et al. 2014), there is a huge spread of results 
in each model of the ensemble, even in pre-industrial 
control simulations (see, for example, Fig. 2 in Lucarini 
and Ragone (2011) for CMIP3 and Fig. 1 in Hobbs et al. 
(2016) for CMIP5). Here, the imbalance should ideally be 
zero (Lucarini and Ragone 2011) since these simulations 
represent an estimate of the unforced quasi-equilibrium 
climate that evolves under the only effect of internal non-
linear dynamics. Moreover, the values of imbalance at 
TOA and at ocean surface are in general different in cli-
mate models (Hobbs et al. 2016).

In the control runs presented here, the ocean surface 
budget is tuned to zero to avoid temperature drift. There-
fore the imbalance at the ocean surface can be considered 
as a measure of the goodness of the tuning procedure in 
control runs. In our simulations, the TOA budget is dif-
ferent from zero, as shown in Table 3. The TOA imbal-
ance can be reduced to lower values by improving the 
climate code, as in our case where it moved from 2.65 to 
−0.55 Wm−2 when friction heating was taken into account 
in the simulations (compare Run1 and Run4 in Table 3). 
Therefore, the TOA budget can be considered as a measure 
of the goodness of parameterisations and coding, since it is 
related to the presence of energy sources/sinks within the 
coupled climate system due to imperfect representations 
of physical processes (such as, for example, friction heat-
ing) and/or to numerical diffusion. Thus, we can confirm 
the importance of using global metrics, such as TOA and 
ocean surface imbalance, as first-order diagnostics of the 
model behaviour (Hobbs et al. 2016). These two quantities 
should always be explicitly stated when numerical results 
are presented.

A model can perfectly conserve energy between its 
components at the ocean surface, as the MITgcm (Campin 
et al. 2008), and still have energy sources/sinks that affect 
the TOA budget (due to approximate processes within the 
model, like numerical or kinetic-energy dissipation), that 
are not accounted for and are sometimes called ‘ghost 
energy’ (Lucarini and Ragone 2011). Within certain mod-
els, a correction is applied to eliminate the kinetic energy 
dissipation by the internal stresses at each time step (Pas-
cale et al. 2011), while in others, analysis of the results 

are presented as anomalies with respect to the time-mean 
nonconservation term (Hobbs et al. 2016). We have cho-
sen to explicitly show the values of TOA imbalance since 
we think that they are very useful to gain insight into the 
limitations/biases of a given climate model.

Since we have verified that the net ocean surface heat 
flux (that is an output of the MITgcm called TFLUX) exactly 
accounts for the temperature drift in the ocean volume, we 
can state that the energy leaks in MITgcm are mainly out-
side the ocean, as occurs in the majority of climate models 
considered in Hobbs et al. (2016). This is also confirmed by 
the fact that the oceanic contribution to the total heat trans-
port, shown in Fig. 8b, does not change much for different 
modelling set-ups, while the total heat transport becomes 
more closer to the observed value of 6 PW at 30◦N (Fasullo 
and Trenberth 2008) when the correct set-up is implemented 
(compare Run1 to Run4 in Fig. 8a).

We have shown that, taken together, the tuning procedure 
and the parameterisations can give useful insight into limita-
tions of a climate model. An example for such an approach 
is given by Fig. 6 where we plotted how the temperature 
drift dT/dt depends on the tuning parameter RH for different 
configurations of MITgcm. A strong dependence of the tem-
perature drift on the tuning parameter corresponds to a steep 
growth (as occurs in Run3 series, squares), a small change 
in RH giving rise to a huge temperature drift. This means 
that the implemented physical process strongly depends on 
the tuning procedure, with the risk that the resulting control 
run will be not stable and too strongly dependent on internal 
variability. On the contrary, if small changes in RH produce 
the same nearly-zero values for the temperature drift, we 
can expect to obtain good-quality control runs with the con-
sidered set-up of the climate code. Thus, the analysis of the 
dependence of the temperature drift on the tuning parameter 
provides insight on the quality of control runs and their sta-
bility. This is a general and robust result that can be applied 
to other climate codes and tuning parameters.

The importance of developing simple diagnostics to 
assure the quality of control runs and model verification is 
even more important in simulations of the deep-past where 
huge uncertainties exist in initial and boundary conditions. 
From the analysis performed in the previous section, it turns 
out that the tuning procedure should be applied for each 
different paleogeographic configuration. We stress here the 
importance of explicitly stating the values of the TOA and 
ocean surface energy imbalance, and how the latter depends 
on the tuning parameter, each time a new simulation of the 
deep-past is presented. This procedure will indeed allow 
other researchers to know important aspects on the quality 
of the numerical results and on the stability of the control 
run. Unfortunately, nowadays these global metrics are almost 
never mentioned in paleoclimate studies. We have seen that a 
small amount of imbalance in the ocean surface budget can 
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induce large effects in SAT, the global ocean temperature or 
the intensity of the overturning circulation (compare Run1 
with Run2 in Figs. 1, 2 and 4). This is particularly important 
in paleoclimate simulations that need to be run for thousands 
of years to attain a fully equilibrated coupled atmosphere-
ocean state that is not known a priori (while in present-day 
simulations we know the characteristics that a control run 
should satisfy at the end of the simulation). Even a small 
imbalance, but lasting for a long period of time, can strongly 
affect the final results. This is why it is important in paleocli-
mate simulations to correctly tune the parameters from the 
beginning and use procedures, such as the one illustrated in 
Fig. 6, that allow one to optimise the physical parameterisa-
tions and configurations used in the climate code.

In climate simulations of the deep-past there is of course 
also the need of constructing realistic initial and boundary 
conditions that can reduce the size of the parameter space. 
Interdisciplinary effort, with contributions from geologists, 
physicists, climate modellers, is essential in this respect and 
intercomparison projects, such as the Paleoclimate Mode-
ling Intercomparison Project (Braconnot et al. 2011; Lunt 
et al. 2017), are crucial to progress in this field. Sensitivity 
studies to the initialisation and to the paleogeography are 
strongly encouraged. Inclusion of the main variables used 
in the present study (in order to calculate TOA and ocean 
surface energy imbalance) are recommended in intercom-
parison datasets.

Acknowledgements  The computations were performed at Univer-
sity of Geneva on the Baobab and CLIMDAL3 clusters. We thank 
Jean-Michel Campin, Marjorie Perroud and Martin Beniston for useful 
discussions, and the MITgcm-support mailing list for valuable advice 
on the code. This work was partly supported by CTI 15574.1 PFES-ES.

References

Adcroft A, Campin JM, Hill C, Marshall J (2004) Implementation of 
an Atmosphere ocean general circulation model on the expanded 
spherical cube. Mon Weather Rev 132:2845. doi:10.1175/
MWR2823.1

Anderson DE, Cahalan RF (2005) The solar radiation and climate 
experiment (SORCE) mission for the NASA earth observing sys-
tem (EOS). Solar Phys 230:3–6

Braconnot P, Harrison SP, Otto-Bliesner B, Abe-Ouchi A, Jungclaus 
J, Peterschmitt JY (2011) The paleoclimate modeling inter-
comparison project contribution to CMIP5. CLIVAR Exch No 
56(16):15–19

Brunetti M, Vérard C, Baumgartner PO (2015) Modeling the middle 
jurassic ocean circulation. J Palaeogeogr 4:373–386

Campin JM, Marshall J, Ferreira D (2008) Sea ice-ocean coupling 
using a rescaled vertical coordinate z*. Ocean Model 24:1–14. 
doi:10.1016/j.ocemod.2008.05.005

Covey C, Gleckler PJ, Phillips TJ, Bader DC (2006) Secular trends 
and climate drift in coupled ocean-atmosphere general circula-
tion models. J Geophys Res 111(D03):107. doi:10.1029/200
5JD006009

Fasullo JT, Trenberth KE (2008) The annual cycle of the energy 
budget. Part II: meridional structures and poleward transports. 
J Clim 21:2313. doi:10.1175/2007JCLI1936.1

Freire JG, Bonatto C, DaCamara CC, Gallas JAC (2008) Multi-
stability, phase diagrams, and intransitivity in the Lorenz-84 
low-order atmospheric circulation model. Chaos 18(3):033121. 
doi:10.1063/1.2953589

Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circula-
tion models. J Phys Oceanogr 20:150–160

Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, 
Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, 
Worley PH, Yang ZL, Zhang M (2011) The community climate 
system model version 4. J Clim 24:4973–4991. doi:10.1175/2
011JCLI4083.1

Golaz JC, Golaz JC, Levy H (2013) Cloud tuning in a coupled cli-
mate model: impact on 20th century warming. Geophys Res Lett 
40:2246–2251. doi:10.1002/grl.50232

Gregoire LJ, Valdes PJ, Payne AJ, Kahana R (2011) Optimal tun-
ing of a GCM using modern and glacial constraints. Clim Dyn 
37(3):705–719. doi:10.1007/s00382-010-0934-8

Hansen J, Russell G, Rind D, Stone P, Lacis A, Lebedeff S, Ruedy 
R, Travis L (1983) Efficient three-dimensional global mod-
els for climate studies: model I and II. Month Weather Rev 
111:609–662

Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s 
energy imbalance and implications. Atmos Chem Phys 
11:13,421–13,449. doi:10.5194/acp-11-13421-2011

Hobbs W, Palmer MD, Monselesan D (2016) An energy conservation 
analysis of ocean drift in the CMIP5 global coupled models*. J 
Clim 29:1639–1653. doi:10.1175/JCLI-D-15-0477.1

Hourdin F, Mauritsen T, Gettelman A, Golaz J, Balaji V, Duan Q, 
Folini D, Ji D, Klocke D, Qian Y, Rauser F, Rio C, Tomassini 
L, Watanabe M, Williamson D (2017) The art and science of 
climate model tuning. Bull Am Meteorol Soc 98:589–602. 
doi:10.1175/BAMS-D-15-00135.1

Howell FW, Haywood AM, Otto-Bliesner BL, Bragg F, Chan 
WL, Chandler MA, Contoux C, Kamae Y, Abe-Ouchi A, 
Rosenbloom NA, Stepanek C, Zhang Z (2016) Arctic sea ice 
simulation in the PlioMIP ensemble. Clim Past 12:749–767. 
doi:10.5194/cp-12-749-2016

Irvine PJ, Gregoire LJ, Lunt DJ, Valdes PJ (2013) An efficient 
method to generate a perturbed parameter ensemble of a fully 
coupled aogcm without flux-adjustment. Geosci Model Devel 
6:1447–1462. doi:10.5194/gmd-6-1447-2013

Jakob C (2014) Going back to basis. Nat Clim Change 4:1042–1045
Kucharski F, Ikram F, Molteni F, Farneti R, Kang IS, No HH, King 

MP, Giuliani G, Mogensen K (2016) Atlantic forcing of Pacific 
decadal variability. Clim Dyn 46:2337–2351. doi:10.1007/
s00382-015-2705-z

Kucharski F, Molteni F, Bracco A (2006) Decadal interac-
tions between the western tropical Pacific and the North 
Atlantic oscillation. Clim Dyn 26:79–91. doi:10.1007/
s00382-005-0085-5

Kucharski F, Molteni F, King MP, Farneti R, Kang I-S, Feudale L 
(2013) On the need of intermediate complexity general circulation 
models: a “SPEEDY” example. Bull Am Meteor Soc 94:25–30

Landrum L, Holland MM, Schneider DP, Hunke E (2012) Antarctic sea 
ice climatology, variability, and late twentieth-century change in 
CCSM4. J Clim 25:4817–4838. doi:10.1175/JCLI-D-11-00289.1

Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: 
a review and a model with a nonlocal boundary layer parameteri-
zation. Rev Geophys 32:363–404. doi:10.1029/94RG01872

Levitus S, Boyer T (1994) World ocean atlas 1994. Temperature, vol 
4. U.S. Department of Commerce, Washington, DC

Levitus S, Burgett R, Boyer T (1994) World ocean atlas 1994. Salinity, 
vol 3. U. S. Department of Commerce, Washington, DC

https://doi.org/10.1175/MWR2823.1
https://doi.org/10.1175/MWR2823.1
https://doi.org/10.1016/j.ocemod.2008.05.005
https://doi.org/10.1029/2005JD006009
https://doi.org/10.1029/2005JD006009
https://doi.org/10.1175/2007JCLI1936.1
https://doi.org/10.1063/1.2953589
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1175/2011JCLI4083.1
https://doi.org/10.1002/grl.50232
https://doi.org/10.1007/s00382-010-0934-8
https://doi.org/10.1175/JCLI-D-15-0477.1
https://doi.org/10.1175/BAMS-D-15-00135.1
https://doi.org/10.5194/cp-12-749-2016
https://doi.org/10.5194/gmd-6-1447-2013
https://doi.org/10.1007/s00382-015-2705-z
https://doi.org/10.1007/s00382-015-2705-z
https://doi.org/10.1007/s00382-005-0085-5
https://doi.org/10.1007/s00382-005-0085-5
https://doi.org/10.1175/JCLI-D-11-00289.1
https://doi.org/10.1029/94RG01872


www.manaraa.com

4436	 M. Brunetti, C. Vérard 

1 3

Lucarini V, Pascale S (2014) Entropy production and coarse graining 
of the climate fields in a general circulation model. Clim Dyn 
43:981–1000. doi:10.1007/s00382-014-2052-5,1304.3945

Lucarini V, Ragone F (2011) Energetics of climate models: net 
energy balance and meridional enthalpy transport. Rev Geophys 
49:RG1001. doi:10.1029/2009RG000323

Lunt DJ, Huber M, Anagnostou E, Baatsen MLJ, Caballero R, DeConto 
R, Dijkstra HA, Donnadieu Y, Evans D, Feng R, Foster GL, Gas-
son E, von der Heydt AS, Hollis CJ, Inglis GN, Jones SM, Kiehl 
J, Kirtland Turner S, Korty RL, Kozdon R, Krishnan S, Ladant 
JB, Langebroek P, Lear CH, LeGrande AN, Littler K, Markwick 
P, Otto-Bliesner B, Pearson P, Poulsen CJ, Salzmann U, Shields 
C, Snell K, Stärz M, Super J, Tabor C, Tierney JE, Tourte GJL, 
Tripati A, Upchurch GR, Wade BS, Wing SL, Winguth AME, 
Wright NM, Zachos JC, Zeebe RE (2017) The DeepMIP contribu-
tion to PMIP4: experimental design for model simulations of the 
EECO, PETM, and pre-PETM (version 1.0). Geosci Model Dev 
10:889–901. doi:10.5194/gmd-10-889-2017

Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-
volume, incompressible Navier Stokes model for studies of the 
ocean on parallel computers. J Geophys Res 102:5753–5766. 
doi:10.1029/96JC02775

Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-
hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 
102:5733–5752. doi:10.1029/96JC02776

Marshall J, Adcroft A, Campin JM, Hill C (2004) Atmosphere-ocean 
modeling exploiting fluid isomorphisms. Month Weather Rev 
132:2882–2894

Mauritsen T, Stevens B, Roeckner E, Crueger T, Esch M, Giorgetta M, 
Haak H, Jungclaus J, Klocke D, Matei D, Mikolajewicz U, Notz 
D, Pincus R, Schmidt H, Tomassini L (2012) Tuning the climate 
of a global model. J Adv Model Earth Syst 4:M00A01. doi:10.1
029/2012MS000154

Molteni F (2003) Atmospheric simulations using a GCM with simpli-
fied physical parametrizations. I: model climatology and variabil-
ity in multidecadal experiments. Clim Dyn 20:175–191

National Research Council (2011) Understanding earth’s deep past: 
lessons for our climate future. The National Academies Press, 
Washington, D.C. doi:10.17226/13111

Nguyen AT, Menemenlis D, Kwok R (2011) Arctic ice-ocean simula-
tion with optimized model parameters: approach and assessment. 
J Geophys Res (Oceans) 116:C04025. doi:10.1029/2010JC006573

Palmer MD, McNeall DJ (2014) Internal variability of Earth’s energy 
budget simulated by CMIP5 climate models. Environ Res Lett 
9(034):016. doi:10.1088/1748-9326/9/034016

Pascale S, Gregory JM, Ambaum M, Tailleux R (2011) Climate 
entropy budget of the HadCM3 atmosphere-ocean general circu-
lation model and of FAMOUS, its low-resolution version. Clim 
Dyn 36:1189–1206. doi:10.1007/s00382-009-0718-1

Sanchez-Gomez E, Cassou C, Ruprich-Robert Y (2016) Drift dynam-
ics in a coupled model initialized for decadal forecasts. Clim Dyn 
46:1819–1840

Sellwood BW, Valdes PJ (2008) Jurassic climates. Proc Geol Assoc 
119:5–17

Sen Gupta A, Muir LC, Brown JN, Phipps SJ, Durack PJ, Monselesan 
D, Wijffels SE (2012) Climate drift in the CMIP3 models. J Clim 
25:4621–4640

Sen Gupta A, Jourdain NC, Brown JN, Monselesan D (2013) Climate 
drift in the CMIP5 models. J Clim 26:8597–8615

Tang Y, Li L, Dong W, Wang B (2016) Reducing the climate shift 
in a new coupled model. Sci Bull 61:488–494. doi:10.1007/
s11434-016-1033-y

Trenberth KE, Fasullo JT, Balmaseda MA (2014) Earth’s energy imbal-
ance. J Clim 27:3129–3144. doi:10.1175/JCLI-D-13-00294.1

Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, 
Cooper JE (1996) Clouds and the earth’s radiant energy system 
(CERES): an earth observing system experiment. Bull Am Mete-
orol Soc 77:853–868

Wild M, Folini D, Schär C, Loeb N, Dutton EG, König-Langlo G 
(2013) The global energy balance from a surface perspective. 
Clim Dyn 40:3107–3134. doi:10.1007/s00382-012-1569-8

Winton M (2000) A reformulated three-layer sea ice model. J Atmos 
Ocean Technol 17:525–531

https://doi.org/10.1007/s00382-014-2052-5,1304.3945
https://doi.org/10.1029/2009RG000323
https://doi.org/10.5194/gmd-10-889-2017
https://doi.org/10.1029/96JC02775
https://doi.org/10.1029/96JC02776
https://doi.org/10.1029/2012MS000154
https://doi.org/10.1029/2012MS000154
https://doi.org/10.17226/13111
https://doi.org/10.1029/2010JC006573
https://doi.org/10.1088/1748-9326/9/034016
https://doi.org/10.1007/s00382-009-0718-1
https://doi.org/10.1007/s11434-016-1033-y
https://doi.org/10.1007/s11434-016-1033-y
https://doi.org/10.1175/JCLI-D-13-00294.1
https://doi.org/10.1007/s00382-012-1569-8


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	How to reduce long-term drift in present-day and deep-time simulations?
	Abstract 
	1 Introduction
	2 Model description and experiments
	3 Results
	3.1 Reference run: Run1
	3.2 Run2
	3.3 Run3
	3.4 Run4
	3.5 Run5

	4 Discussion and conclusions
	Acknowledgements 
	References


